
VIBRATION SUPPRESSION STRATEGIES FOR LARGE
TENSION-ALIGNED ARRAY STRUCTURES

RANJAN MUKHERJEE

MICHIGAN STATE UNIVERSITY

11/19/2013
Final Report

DISTRIBUTION A: Distribution approved for public release.

AIR FORCE RESEARCH LABORATORY
AF OFFICE OF SCIENTIFIC RESEARCH (AFOSR)/RSA

ARLINGTON, VIRGINIA 22203
AIR FORCE MATERIEL COMMAND

AFRL-OSR-VA-TR-2013-0613

Page 1 of 1

12/6/2013file://\\52zhtv-fs-725v\CStemp\adlib\input\wr_export_131206094237_1562582005...



 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 
 

2. REPORT TYPE 
 

3. DATES COVERED (From - To) 
  

4. TITLE AND SUBTITLE 
 

5a. CONTRACT NUMBER 
 

 
 

5b. GRANT NUMBER 
 

 
 

5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
 

5d. PROJECT NUMBER 
 

 
 

5e. TASK NUMBER 
 

 
 

5f. WORK UNIT NUMBER
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

 
 
 
 
 

 
 
 
 
 

 
 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
   
   
  11. SPONSOR/MONITOR’S REPORT  
        NUMBER(S) 
   
12. DISTRIBUTION / AVAILABILITY STATEMENT 
 
 
 
 

13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 
 

15. SUBJECT TERMS 
 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
 

a. REPORT 
 

b. ABSTRACT 
 

c. THIS PAGE 
 

  
 

19b. TELEPHONE NUMBER (include area 
code) 
 

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18 

11-18-2013 Final Report Sep 1, 2010 to Aug 31, 2013

Vibration Suppression Strategies for Large Tension-Aligned Array Structures FA9550-10-1-0500

Ranjan Mukherjee 
Alejandro R. Diaz

Michigan State University 
Department of Mechanical Engineering 
428 S. Shaw Lane, Room 2555 
East Lansing, MI 48824

Tension-aligned structures have been proposed for space-based antenna applications. The structure uses a compression 
member to impart tension on the antenna, thus helping to maintain shape and facilitate disturbance rejection. These structures 
can be large and are therefore sensitive to low-frequency excitation. Three energy-based control strategies have been 
proposed for vibration suppression. The first strategy uses stiffness variation to funnel vibration energy from low-frequency 
modes to high-frequency modes of the structure, where it is dissipated naturally due to internal damping. The second control 
strategy uses a sliding mechanism to apply a moving constraint; the constraint force is measured in real time and is used to 
prescribe the motion of the slider. Energy of the structure is reduced continuously by doing negative work from the slider. The 
third strategy models the antenna as a thin plate and controls the tension on the boundary of the plate to suppress vibration. 
The Rayleigh-Ritz method was used to model the plate structure and an observer was used to estimate the modal amplitudes. 
For the second and third strategies, Lyapunov stability theory was used to show vibration suppression. Practical issues related 
to actuator bandwidth were also addressed.

40
Dr. Ranjan Mukherjee

(517) 355-1834



FINAL PERFORMANCE REPORT

Vibration Suppression Strategies for

Large Tension-Aligned Array Structures

AFOSR Grant FA9550-10-1-0500

Grant Period: September 1, 2010 to August 31, 2013

Ranjan Mukherjee Alejandro R. Diaz

Department of Mechanical Engineering

2555 Engineering Building

Michigan State University

East Lansing, MI 48824-1226

Email: {mukherji, diaz}@egr.msu.edu

Abstract

Tension-aligned structures have been proposed for space-based antenna applications. The

structure uses a compression member to impart tension on the antenna, thus helping to maintain

shape and facilitate disturbance rejection. These structures can be large and are therefore

sensitive to low-frequency excitation. Three energy-based control strategies have been proposed

for vibration suppression. The first strategy uses stiffness variation to funnel vibration energy

from low-frequency modes to high-frequency modes of the structure, where it is dissipated

naturally due to internal damping. The second control strategy uses a sliding mechanism to

apply a moving constraint; the constraint force is measured in real time and is used to prescribe

the motion of the slider. Energy of the structure is reduced continuously by doing negative work

from the slider. The third strategy models the antenna as a thin plate and controls the tension

on the boundary of the plate to suppress vibration. The Rayleigh-Ritz method was used to

model the plate structure and an observer was used to estimate the modal amplitudes. For the

second and third strategies, Lyapunov stability theory was used to show vibration suppression.

Practical issues related to actuator bandwidth were also addressed.
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1 Introduction

Large space structures have been contemplated for use as space-based radars for imaging and

moving object identification and tracking. These radars will consist of a large support structure

and phased array antennas attached to this structure. A high degree of accuracy is required but it

is difficult to achieve since these structures are large and sensitive to low-frequency disturbances.

Vibration suppression in large space structures is a challenging problem and a practical solutions

need to be developed.

To meet the precision requirements of space-based radars, tension-aligned structures have been

proposed by Mikulas et al. [1], and Jones et al. [2]. In these structures, the antennas are attached

to the support structure via tensioners at each end (see Fig.1); the support structure is used as a

compression member to impart tension. The tension in the antenna helps maintain flatness, but

more importantly, increases its stiffness which is necessary for disturbance rejection [3]. Tension

also increases structural damping [5] which facilitates vibration suppression. The tension-aligned

architecture is equally well-suited for radar designs where the antennas are an array of panels or

are attached to a flexible membrane [6, 7, 8].

The mass of antennas need to be minimized to reduce the required tension [7] and to reduce

the overall mass and complexity of the system. Therefore, in tension-aligned structures, the sensor

arrays are transformed into two-dimensional structures. To seek a balance between mass efficiency

and structural stability, minimum thickness of the arrays is necessary. In a recently proposed

structural solution [7, 8], the antenna consists of a series of linked semi-rigid panels connected to

a catenary cable network. The highly flexible and low damping nature of the tensioned structure

demands sufficient control for suppression of vibration. To this end, we explored three different

control strategies; these are described in the next three sections.

Support Structure in Compression

Sensor Surface in Tension

Compression Support Truss

Tensioned Radar Array Panels

Figure 1: A tension-aligned structure comprised of a support structure and a sensor surface - taken
from Jones et al. [2].
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2 Vibration Suppression Through Stiffness Switching

In this section we discuss the first control strategy for vibration suppression. This strategy uses

stiffness variation to funnel vibration energy from low-frequency modes to high-frequency modes of

the structure, where it is dissipated naturally due to internal damping. The strategy is verified in

simulations using both two-dimensional and three-dimensional models of tension aligned structures.

2.1 Stiffness Variation in Multi-DOF Systems

Consider the N -DOF linear system

MẌ +K(t)X = 0 (1)

where X = (x1, x2, · · · , xN )T denotes the vector of generalized coordinates, M denotes the mass

matrix, and K(t) denotes the stiffness matrix. The stiffness matrix K(t) consists of a constant

stiffness matrix K0 and a time-varying stiffness matrix ∆K(t) as follows

K(t) = K0 +∆K(t), ∆K(t) =

{
0 if t ∈ [ti, ti+1)

Kr if t ∈ [ti+1, ti+2)
, i = 0, 2, 4, · · · (2)

where Kr is the change in the stiffness matrix due to the addition of springs connecting pairs of

generalized coordinates. In the simplest case where a single spring is used to connect a pair of

generalized coordinates xm and xn, the entries of Kr ∈ R
N×N can be obtained from the Hessian of

the additional strain energy (1/2)kr(xm − xn)
2:

Kr(i, j) =







kr if (i, j) = (m,m) or (n, n)

−kr if (i, j) = (m,n) or (n,m)

0 otherwise

m 6= n (3)

where kr is the stiffness of the spring, which is large compared to the magnitude of the entries of

K0.

In Eq.(2), tj, j = 0, 1, 2, · · · , are chosen such that the change in stiffness does not increase

the total energy of the system. This is assured by choosing the time tj when switching ∆K(tj)

from 0 to Kr (stiffness increase) such that all the relevant relative displacements are zero. In the

simplest case mentioned above, where a single spring is used, tj is chosen to switch ∆K(tj) from 0

to Kr (stiffness increase) such that xm(tj) − xn(tj) = 0. When ∆K(tj) is switched from Kr to 0

(stiffness decrease), tj can be arbitrary. In this process of stiffness decrease, there might be direct

and instantaneous loss of energy due to the fact that relative displacement is usually nonzero given

arbitrary tj. This direct energy loss only favorably reduces the energy of the system.

Let φi and µi, i = 1, 2, . . . , N , denote the linearly independent orthogonal mode shapes and the

corresponding modal coordinates in the unconstrained state. Similarly, let ψi and νi, i = 1, 2, . . . , N ,

denote the linearly independent orthogonal mode shapes and the corresponding modal coordinates

in the constrained state. At the time of application of the constraint (∆K changes from 0 to Kr),

the generalized coordinates and their velocities can be expressed as follows
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X(ti+1) =

{ ∑N
i=1 µi(ti+1)φi = Φµ(ti+1)

∑N
i=1 νi(ti+1)ψi = Ψν(ti+1)

i = 0, 2, 4, · · · (4)

Ẋ(ti+1) =

{ ∑N
i=1 µ̇i(ti+1)φi = Φµ̇(ti+1)

∑N
i=1 ν̇i(ti+1)ψi = Ψν̇(ti+1)

i = 0, 2, 4, · · · (5)

where Φ = [φ1, φ2, . . . , φN ] and Ψ = [ψ1, ψ2, . . . , ψN ] are modal matrices in the unconstrained

and constrained states, respectively. Using Eqs.(4) and (5), the transition of the system from the

unconstrained state to the constrained state can be described by the relations

ν(ti+1) = Γµ(ti+1), ν̇(ti+1) = Γµ̇(ti+1), i = 0, 2, 4, · · · (6)

where Γ is the modal disparity matrix [21, 22], and is given by the relation

Γ = ΨT
MΦ (7)

The transition of the system from the constrained state to the unconstrained state can be similarly

described by the relations

µ(ti) = ΓT ν(ti), µ̇(ti) = ΓT ν̇(ti), i = 0, 2, 4, · · · (8)

The transformation matrix Γ is the identity matrix whenKr = 0, i.e., when no stiffness variation

is introduced. When Kr 6= 0, Γ(i, j) 6= 0 for some values of i and j, i 6= j. This implies that energy

will be transferred from the j-th mode of the unconstrained state to the i-th mode of the constrained

state, and vice versa. If the frequency of the i-th mode of the constrained state is much higher than

that of the j-th mode of the unconstrained state, the energy transferred from the low-frequency

mode to the high-frequency mode will be quickly dissipated. This follows from the assumption of

Constrained

State

Unconstrained

State

Unconstrained

State

constraint

application

constraint

removal

HFM HFM HFM

LFM LFM LFM

one cycle of constraint application and removal

natural dissipation

due to internal damping

Figure 2: Vibration suppression through energy funneling from low-frequency modes (LFM) into
high-frequency modes (HFM).
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modal damping model with the uniform damping ratio. For the process to be repeated, the system

has to be switched back from the constrained state to the unconstrained state. To avoid energy

flow from the high-frequency modes in one state to the low-frequency modes in the other state, the

system should be held in each state sufficiently long time such that energy in the high-frequency

modes is dissipated. This strategy for vibration suppression is explained with the help of Fig.2.

The success of vibration suppression using stiffness switching depends on modal disparity cre-

ated by the change in stiffness. To quantify modal disparity, a metric is defined

λ =

N∑

i=j+1

N−1∑

j=1

(i− j) |γij | (9)

where γij = Γ(i, j) is the (i, j)-th entry of the modal disparity matrix Γ. This metric is a weighted

sum of the projections of the low-frequency modes in the unconstrained state onto high-frequency

modes in the constrained state and the weights are the difference of the indices of the modes

in the two states. This metric was used to determine better location of constraints in a simple

tension-aligned structure, modelled and simulated in the following subsections.

support structure

hinged panel array

assembled tension-sligned structure

planar elastica arch

Figure 3: A tension-aligned structure constructed by connecting a support structure (in compres-
sion) to an array of hinged panels (in tension).

2.2 Model of a Two-Dimensional Simple Tension-Aligned Structure

In this subsection a finite-element model of a two-dimensional tension-aligned structure is presented.

The tension-aligned structure, shown in Fig.3, consists of a planar elastica arch support structure

in compression and a hinged panel array in tension. The planar elastica arch is initially a straight

slender rod; it is bent into a curved shape by eccentric end loads that maintain equilibrium with

the tension forces in the panels.

2.2.1 Nonlinear Dynamic Model of the Support Structure

The dynamic model of the elastica arch was reproduced from the work by Perkins [23]. The elastica

arch, shown in Fig.4, is assumed to be a slender rod of length L, held in static equilibrium under

the horizontal end-load f and moment fd, where d denotes the vertical eccentricity of the end-load

f . In a disturbed state, a point on the rod has a displacement of ~u(s, t), where s denotes the
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arc length along the centerline of the static equilibrium shape, and t denotes time. ~u(s, t) can be

decomposed into its tangential component and normal components as follows

~u(s, t) = ut(s, t) ǫ̂t + un(s, t) ǫ̂n

where ǫ̂t and ǫ̂n are unit vectors along the tangential and normal directions of the static equilibrium

shape, shown in Fig.4.

Kirchhoff’s assumptions for rod deformation [24] are taken, which are: (i) rod is linearly elastic,

(ii) strains are small (although rotations may be large) and cross-sectional dimensions of the rod

are small compared to its length, (iii) cross-sections remain plane, undistorted and normal to the

axis of the rod, and (iv) the transverse stress and rotary inertia can be neglected. Under these

assumptions, the kinetic energy and the strain energy of the rod can be expressed as follows

ΠT =
1

2

∫ L

0
ρ

[(
∂ut
∂t

)2

+

(
∂un
∂t

)2
]

ds (10)

ΠV =
1

2

∫ L

0

(
EIk2 + EAe2

)
ds (11)

where ρ, E, A and I are constants and denote the mass per unit length, Young’s modulus, cross-

sectional area, and area moment of inertia of the rod, respectively. In Eq.(11) k = k(s, t) and

e = e(s, t) are the curvature and the axial strain. The expression for k(s, t) is obtained from Love

[25] and that of e(s, t) is obtained from Perkins and Mote [26]:

k = ks +
∂

∂s

(
∂un
∂s

+ ksut

)

(12)

e =
p

EA
=

ps
EA

+
∂ut
∂s

− ksun +
1

2

[(
∂ut
∂s

− ksun

)2

+

(
∂un
∂s

+ ksut

)2
]

(13)

where p = p(s, t) is the axial force, and ps and ks are the static values of p and k, respectively, in

the static equilibrium configuration.

The work done by external forces can be expressed as

Wnc = f (ut cos θ0 + un sin θ0)|s=0 + fd

(
∂un
∂s

+ ksut

)∣
∣
∣
∣

s=L

s=0

(14)

s
t

nθ0

s = 0
s = L

f

fd x

y

Figure 4: A planar elastica arch
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where θ0 is the angle of inclination of the rod at s = 0, which will be determined later. Substituting

Eqs.(12) and (13) into Eq.(11); neglecting terms that have degree three and higher of variables ut
and un, and their spatial derivatives; and using Hamilton’s principle

δ

∫ t2

t1

(ΠT −ΠV +Wnc) dt = 0 (15)

one gets the non-dimensional equations of motion in the normal and tangential directions [23]

−
∂3

∂S3

(
∂Un

∂S
+KUt

)

+
∂

∂S

[

P

(
∂Un

∂S
+KUt

)]

+K

(

P +
1

Ī

)(
∂Ut

∂S
−KUn

)

−
∂2K

∂S2
+ PK =

∂2Un

∂T 2

(16)

K

[
∂2

∂S2

(
∂Un

∂S
+KUt

)]

+
∂

∂S

[(

P +
1

Ī

)(
∂Ut

∂S
−KUn

)]

−KP

(
∂Un

∂S
+KUt

)

+K
∂K

∂S
+
∂P

∂S
=
∂2Ut

∂T 2

(17)

In the equations above, the non-dimensional variables are defined as follows

S ,
s

L
, D ,

d

L
Ut ,

ut
L
, Un ,

un
L
, K , ksL

P ,
psL

2

EI
, F ,

fL2

EI
, Ī ,

I

AL2
, T ,

t

(ρL4/EI)1/2

(18)

Together with the equations of motion, the following boundary conditions are obtained from Hamil-

ton’s principle:

{[
∂

∂S

(
∂Un

∂S
+KUt

)

+K − FD

]

δ

[
∂Un

∂S

]}

S=0

+

{[

−
∂

∂S

[
∂

∂S

(
∂Un

∂S
+KUt

)

+K

]

+ P

(
∂Un

∂S
+KUt

)

+ F sin θ0

]

δUn

}

S=0

+

{[

K

[
∂

∂S

(
∂Un

∂S
+KUt

)]

+K2 +

(

P +
1

Ī

)(
∂Ut

∂S
−KUn

)

+ P − FDK + F cos θ0

]

δUt

}

S=0

+

{[

−
∂

∂S

(
∂Un

∂S
+KUt

)

−K + FD

]

δ

[
∂Un

∂S

]}

S=1

+

{[
∂

∂S

[
∂

∂S

(
∂Un

∂S
+KUt

)

+K

]

− P

(
∂Un

∂S
+KUt

)]

δUn

}

S=1

+

{[

−K

[
∂

∂S

(
∂Un

∂S
+KUt

)]

−K2 −

(

P +
1

Ī

)(
∂Ut

∂S
−KUn

)

+ P + FDK

]

δUt

}

S=1

= 0

(19)
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2.2.2 Linearized Dynamic Model of the Support Structure

The static equilibrium configuration of the elastica arch depends on the values of f and d, or

alternatively, on the non-dimensional variables F and D. For a tension-aligned structure, F and

D are design variables; the value of F depends on the tension desired in the hinged panel array,

and the value of D depends on the stiffness of the slender rod (elastica arch) and the difference

in lengths of the hinged panel array and the slender rod. Assuming that the values of F and

D are provided, static equilibrium configuration and pre-stress distribution can be obtained by

substituting Ut = Un = 0 in Eqs.(16) and (17) and solving for K(S), P (S), and θ0. A closed-form

solution to this nonlinear static problem involves elliptic integrals of the first kind and can be found

in [23].

Then Raleigh-Ritz method [27] was used to obtain the linearized dynamic model of the elastica

arch about its static equilibrium configuration. To write the differential equations, one can substi-

tute the equilibrium values of P = P (S) and K = K(S) into Eqs.(12) and (13), which yields the

non-dimensional linear vibration equations

−
∂3

∂S3

(
∂Un

∂S
+KUt

)

+
∂

∂S

[

P

(
∂Un

∂S
+KUt

)]

+K

(

P +
1

Ī

)(
∂Ut

∂S
−KUn

)

=
∂2Un

∂T 2
(20)

K

[
∂2

∂S2

(
∂Un

∂S
+KUt

)]

+
∂

∂S

[(

P +
1

Ī

)(
∂Ut

∂S
−KUn

)]

−KP

(
∂Un

∂S
+KUt

)

=
∂2Ut

∂T 2

(21)

To solve Eqs.(20) and (21), one needs to go back to the energy form. Substituting the equilibrium

values of P = P (S) and K = K(S) into the non-dimensional version of Eqs.(12) and (13), and then

substituting the results in the non-dimensional form of the kinetic and strain energies in Eqs.(10)

and (11), neglecting terms that have degree three and higher of variables Un and Ut and their spatial

derivatives, yield the following expressions for the non-dimensional kinetic and strain energies

Π̄V =
1

2

∫ 1

0







terms 1 and 2
︷ ︸︸ ︷

K2 + P 2Ī +

terms 3 and 4
︷ ︸︸ ︷

2K
∂

∂S

(
∂Un

∂S
+KUt

)

+ 2P

(
∂Ut

∂S
−KUn

)

+

[
∂

∂S

(
∂Un

∂S
+KUt

)]2

+

(

P +
1

Ī

)(
∂Ut

∂S
−KUn

)2

+ P

(
∂Un

∂S
+KUt

)2
}

dS (22)

Π̄T =
1

2

∫ 1

0

{(
∂2Un

∂T 2

)2

+

(
∂2Ut

∂T 2

)2
}

dS (23)

Note that Π̄V and Π̄T are related to ΠV and ΠT , respectively, by the relations

Π̄V =
L

EI
ΠT , Π̄T =

L

EI
ΠT

In Eq.(22), terms 1 and 2 of the integrand are functions of S alone, and not a function of time.
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The same is true for terms 3 and 4 since a variation of the integral of these terms can be shown to

be zero. The first four terms of Eq.(22) therefore result in constant strain energy, which does not

contribute to the vibration of the system.

Assuming Un and Ut to be of the form

Un(S, T ) = Vn(S) e
iωT , Ut(S, T ) = Vt(S) e

iωT (24)

where Vn(S) and Vt(S) are the mode shapes, the mode shapes are discretized as follows:

Vn(S) =
∑

i

Wn,i(S)Yi =Wn(S) · Y (25)

Vt(S) =
∑

i

Wt,i(S)Zi =Wt(S) · Z (26)

where Wn(S) and Wt(S) are vectors of known shape functions. They are constructed using piece-

wise polynomials (cubic and linear, respectively), standard in finite element discretizations, with

discontinuities at nodes. Y and Z are vectors of nodal degrees of freedom (see Eq.(??) below)

associated with Vn and Vt. Substituting Eqs.(24), (25) and (26) into Eqs.(22) and (23), one can

rewrite the non-dimensional kinetic and strain energies as follows:

Π̄V =
ei2ωT

2

[
Y T ZT

]
KA

[
Y

Z

]

+ Const (27)

Π̄T =
ei2ωT

2

(
−ω2

) [
Y T ZT

]
MA

[
Y

Z

]

(28)

where

Const =
1

2

∫ 1

0

{

K2 + P 2Ī + 2K
∂

∂S

(
∂Un

∂S
+KUt

)

+ 2P

(
∂Ut

∂S
−KUn

)}

dS (29)

is the constant strain energy associated with the static equilibrium configuration, discussed before.

Using this form the mass and stiffness matrices MA and KA of the elastica arch (support structure)

were assembled.

2.2.3 Hinged Panel Array

The array of hinged panels is shown in Fig.5. It was modelled using a standard finite element

method. Two-dimensional two-node frame elements were employed with three degrees of freedom

at each node: two translational and one rotational degrees of freedom. A geometric stiffness matrix

was added to the standard frame stiffness matrix to model the effect of tension f . A hinge between

two panels is treated as a node in the finite element model. The left and right elements of the hinge

node have independent rotations but have common translations. The mass and stiffness matrices

are assembled as MP and KP .

The the hinged panel array is then assembled with the elastica arch by connecting their ends

together using pin joints. In the modelling, that is to assemble MA with MP and assemble KA with

10
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Figure 5: The array of hinged panels

KP . After assembly, the end nodes of the two substructures share translations in the plane but

maintain independent rotational degrees of freedom.

2.2.4 Methods of Stiffness Variation

Stiffness variation described by Eq.(2) was realized in the assembled tension-aligned structure by

two methods. These two methods are depicted in Fig.6 and are described below:

(A) The rotations of two adjacent panels at their common hinge, θkP and θk+1
P , are connected by

a rotational spring of time-varying stiffness.

(B) Node i on the elastica arch and node j on the panel array are connected by a translational

spring of time-varying stiffness.

Method (A) can be implemented by placing an electromagnetic brake at the hinge of the adjacent

panels. Turning on the brake prevents relative rotation between the adjacent panels and is equiva-

lent to constraining the degrees of freedom θkP and θk+1
P by a rotational spring of very high stiffness.

Turning off the brake releases the degrees of freedom and is equivalent to setting the spring stiffness

to zero. Method (B) can be implemented by connecting and disconnecting an elastic bar between

a point on the arch and a point on the panel. These two points were chosen to coincide with nodes

of the finite element model for the purpose of simulation.

The stiffness of the tension-aligned structure can be varied using multiple springs of the type

described in method (A) and/or method (B). Since each of these springs can be in one of two

states, the tension-aligned structure have multiple stiffness states. In the next section, where

simulation results are presented, the stiffness of the structure was switched cyclically between the

lowest stiffness state and the highest stiffness state via intermediate stiffness states. The lowest

and highest stiffness states are defined as the states with the lowest and the highest fundamental

frequency.

rotational spring
at hinge

node k

hinged panel array

elastica arch

node i

node j

(A) (B)

uin

uit

xj

yj

θkP

θk+1

P

Figure 6: Stiffness variation in the tension-aligned structure is realized using two methods: (A)
and (B); these are described in section 3.4.
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Table 1: Properties of Simulated Tension-Aligned Structure

Material Aluminum

Young’s modulus E 69 × 109 Pa

Density ρ̄ 2700 kg/m3

Damping ratio ζ 0.001

Panel number 8

Panel length Lp 1.000 m

Panel area b× h 0.500 m × 0.015 m

Radius of support rod r 0.040 m

Length of support rod L 8.000 m approx.

Eccentricity of connection d 0.008 m

Tension f 1000 N

2.2.5 Numerical Simulation

The material and geometric properties of the tension-aligned structure are provided in Table 1.

The structure is made of aluminum and the damping ratio of all modes is assumed to be ζ = 0.001.

The panel array is comprised of eight panels of dimensions Lp × b× h; these dimensions are shown

in Fig.7. Each panel is modelled using 10 beam elements. The support structure (elastica arch)

is initially a straight rod of radius 0.04 m and length ≈ 8.00 m. It is modelled using 80 elements.

The eccentricity of the load applied to the support structure is 0.008 m. The tension in the hinged

panel array was assumed to be 1000 N. This is less than 5% of the buckling load of the straight

rod with free-free boundary conditions. In the following of this subsection, the behavior of the

structure without control, and with control using two different methods of stiffness variation was

simulated.

With an initial condition where the second joint of the hinged panel array (see Fig.7) was

displaced vertically by 0.01 m (1% of the length of the panel array) and released, the first 25 modes

of the structure were simulated; these do not include the rigid-body modes. The energy of the

tension-aligned structure is shown in Fig.8 for three different cases, as described below:

1. Unconstrained structure (no control) undergoing free vibration,

side view

y1 y4 y7

J1 J3 J4 J6
Lph

b

Figure 7: The eight-panel tension-aligned structure used in simulations.
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2. Constrained structure (no control) with high-stiffness rotational spring in joints J1, J3, J4
and J6 - see Fig.7. Using method (A) of stiffness variation, the stiffness of the rotational

springs was activated when the adjacent panels were aligned. The rotational springs were

activated at the earliest possible opportunity in a sequential manner and were kept in their

high stiffness state.

3. Controlled structure with switched stiffness using method (A). The high-stiffness rotational

springs in joints J1, J3, J4 and J6 were activated sequentially when their adjacent panels were

aligned and their stiffness were then set to zero simultaneously. The process was repeated 92

times in the simulation period of 180 sec.

It is clear from Fig.8 that the energies of the unconstrained structure and the constrained structure

decayed slowly compared to the structure with switched stiffness. After 180 sec, the unconstrained

structure and the constrained structure had ≈ 22.5% of their initial energy left; in contrast, the

structure with switched stiffness had ≈ 0.4% of its initial energy left. Although vibration energy

was dissipated through internal damping in all three cases, the structure with switched stiffness has

higher rate of energy dissipation since it effectively funnels energy from the low-frequency modes

to the high-frequency modes.

For the structure with switched stiffness, the joints were released simultaneously, not sequen-

tially, to reduce the time required for each cycle of constraint application and removal. In simu-

lations, where high-stiffness springs were used to constrain the joints, simultaneous release of the

joints caused residual energy stored in the springs to vanish. This discontinuous change in the

energy, was however not the main mechanism of energy dissipation. A bookkeeping of this energy

over all cycles indicates that it did not exceed 0.1% of the total energy at its initial level. This

means the bulk of the energy was dissipated due to energy transfer from low-frequency modes to

high-frequency modes. In practical implementation [22], where electromagnetic brakes may be used

to constrain the joints, release of the brakes will not result in direct loss of energy (since brakes

do not store energy) but facilitate energy transfer to the high-frequency modes where they will be

dissipated quickly.
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switched stiffness - method (A)

Figure 8: Plot of energy for the three cases discussed in section 4.2.

The rates of energy decay of the unconstrained structure and the constrained structure were

almost identical. Since the structure has many degrees-of-freedom and activating the springs in

four joints only makes it marginally stiffer than the unconstrained structure. This can be verified
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from Table 2 which shows the first six natural frequencies of the unconstrained and constrained

structures.

Table 2: First six natural frequencies of the unconstrained and the constrained tension-aligned
structure in rad/s.

Unconstrained
ω1 ω2 ω3 ω4 ω5 ω6

3.820 6.999 9.129 13.144 15.859 20.213

Constrained
ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6

3.996 7.502 11.096 28.042 37.875 71.666

The structure with switched stiffness, where stiffness was varied using method (A), had a faster

rate of energy decay than the uncontrolled (unconstrained and constrained) structures.

In order to further improve the efficiency of the control using switched stiffness, different meth-

ods of stiffness variation need to be investigated. Applying methods (A) and (B), again using 25

modes, the behavior of the structure was simulated for the same initial condition that was used in

the previous case. The energy of the tension-aligned structure is shown in Fig.9 for the following

three cases:

1. Unconstrained structure undergoing free vibration,

2. Structure with switched stiffness using method (A). The high-stiffness rotational springs in

joints J1, J3, J4 and J6 were activated sequentially when their adjacent panels were aligned

and their stiffness were then set to zero simultaneously. The process was repeated 92 times

within the simulation period of 180 sec.

3. Structure with switched stiffness using methods (A) and (B). The high-stiffness rotational

springs in joints J1, J3, and J4 were activated sequentially when their adjacent panels were

aligned. This was followed by connecting an elastic bar (high-stiffness translational spring)

between a point on the elastica arch and a point on the panel array (see Fig.7) in a manner

such that no energy was added to the structure. The stiffness of all four springs were then

set to zero simultaneously. The process was repeated 105 times within the simulation period

of 180 sec.

It is clear from Fig.9 that the energy of the uncontrolled structure decayed slowly compared to

the structure with switched stiffness. After 180 sec, the uncontrolled structure had ≈ 22.5% of its

initial energy left; in contrast, the structure with switched stiffness using method (A) had ≈ 0.4%

of its initial energy left. For vibration suppression to ≈ 0.4% energy level, methods (A) and (B)

combined requires 76 sec as compared to 180 sec required by method (A). Accordingly, for the case

of methods (A) and (B) combined, the transverse displacements of three points on the hinged panel

array Fig.10, which clearly shows the suppression of vibration.

The efficiency of vibration suppression using stiffness variation can be much improved by com-

bining methods (A) and (B). This improvement in effectiveness can be understood by examining

the modal disparity matrices for the two cases and comparing their modal disparity indices. The
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Figure 9: Plot of energy for the three cases discussed in section 4.3.
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Figure 10: Plots of y1, y4 and y7 (see Fig.7) - the transverse displacements of three points on the
hinged panel array.
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modal disparity indices for these two cases were computed as

λA = 22.15, λAB = 40.48 (30)

Since λAB is greater than λA, stiffness variation combining methods (A) and (B) is more effective

than method (A) in transferring energy from the low-frequency modes to the high-frequency modes.

Modal disparity proves to be a effective measure to evaluate the magnitude of stiffness variation

for the purpose of vibration suppression.

2.3 Model of a Three-Dimensional Simple Tension-Aligned Structure

Figure 11: Overview of the tension-aligned three-dimensional structure. 8 panels are connected
using 7 hinges and supported by a truss structure.

A three-dimensional model was built to verify the effectiveness of the stiffness variation method

in a more realistic structure. This model takes the design data of the truss structure from the

ISAT project and was set all material to be aluminum. 17 truss cells were built. Each cell has the

dimension of 0.5 m and the truss structure has the total length of 8.5 m. The truss functions as a

support structure and provides tension for the hinged panel array where the antenna is mounted.

There are 8 panels hinged to form an array and each panel has the dimension of 1.00 m× 0.50 m×

0.01 m. The overview of structure is shown in Fig.11. The combined structure is clamped at one

end and free at another. The tension level was set to be 200 N. Geometry of the structure is

depicted in Fig.12.

The finite element package ANSYS was used for the finite element modelling. The truss structure

was modelled using link element that has two nodes and three degrees of freedom at each node.

The plates were modelled using shell element that has four nodes and six degrees of freedom at

each node. In total the DOF number is 648 and 25 modes were used in the dynamic simulation.

Only method (A) was used in this model for the application of stiffness variation. The control

logic was similar with the two-dimensional model. Results of vibration suppression are very con-

sistent, as shown in Fig.13. When four hinges were used, the energy plot resembles the results of

the two-dimensional model. As the number of controlled hinges increases, vibration suppression

gets more efficient. This is because the magnitude of the modal disparity increases as the number

of controlled hinges increases.
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Figure 13: Plots of energy for cases of controlling different number of joints.

3 Vibration Suppression Through Sliding Mechanism

In this section we discuss the second control strategy for vibration suppression. This strategy

is different from the first control strategy in that the location of the constraint does not change

discretely from one point in the structure to another but moves continuously. The strategy is

verified in simulations using a moving slider than constrains the transverse displacement of the

antenna, modeled as a nonlinear beam, relative to the support structure, which is assumed to be

rigid.

3.1 Equations of Motion for a Nonlinear Beam with a Fixed Slider

Similar to Sec. 2.2.1, the planar vibration model of the nonlinear beam was derived following

the work by Perkins [23] on the elastica arch. Consider a slender beam shown in Fig.14, held in

equilibrium under horizontal end load f , where f can be either tensile or compressive (less than

the buckling load). The beam is initially straight and measured to have length L under f . Both
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ends of the beam are subsequently pinned to the ground; this creates pre-stress in the beam. A

frictionless slider is assumed to constrain the motion of the beam; its location is fixed in space that

initially coincides with the midpoint of the beam. The slider restricts the position of the material

point on the beam in contact with it, but does not restrict the slope of the beam. Since the slider

is fixed and does not move with the beam, material can flow through it. A point Q on the beam

instantaneously in contact with the constraint can be described using material coordinate s = sq,

where s is measured in the initial equilibrium configuration using Lagrangian description (material

coordinate). Due to a disturbance, a point on the beam has displacement of ~u(s, t), where t denotes

time. ~u(s, t) can be decomposed into tangential component ~ut(s, t) which is always horizontal and

normal component ~un(s, t) which is always vertical. Note that two sets of coordinates are used

here, namely, the material coordinate system s and the X-Y frame.

The sliding constraints can be described as

C1 = un(s = sq, t) = 0 (31)

C2 = ut(s = sq, t) + sq(t)− L/2 = 0 (32)

where Eq.(31) states that any material point in contact with the constraint should never have

vertical motion. Equation (32) states that the material point Q in contact with the slider is

initially measured as sq in the initial equilibrium configuration, and that point Q has a horizontal

displacement of ut in order to meet the constraint imposed by the slider.

Using Kirchhoff’s assumptions for beam deformation [24], with the consideration that the beam

remains straight in its equilibrium configuration, the nonlinear axial strain can be written as [26]

e = −f/EA+
∂ut
∂s

+
1

2

[(
∂ut
∂s

)2

+

(
∂un
∂s

)2
]

(33)

The curvature k can be expressed as [25]

k =
∂2un
∂s2

(34)

where A, E, and I denote the cross-sectional area, Young’s modulus, and area moment of inertia

s

Sliding 

Constraint

L

Y

X

qs

Q

~u(s, t)

~un

~ut

~u(sq, t)

Figure 14: A pinned-pinned beam with a sliding constraint.
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of the beam, respectively. The virtual work done by internal elastic forces due to any virtual

deformation can be written as

∫

Ω

σδ[ε] dΩ =

∫ L

0
EAeδ[e] ds +

∫ L

0
EIkδ[k] ds (35)

where σ and ε represent general stress and strain, respectively. Ω is the domain of interest which

include all material points on the beam.

Using the principle of virtual displacement and D’Alembert’s principle, together with Lagrange

multipliers yield the dynamics of the beam in the following form

∫

Ω

σδ[ε] + (−P+ ρü) · δ[u] dΩ = δ [λ ·C] (36)

where vector P is the external force, u is the displacement field, (̇) is the derivative with respect to

T , λ is a vector of Lagrange multipliers, and C is the vector of constraint expressions. The term

on the right hand side of Eq.(36) can be expanded as

λ ·C = λ1C1 + λ2C2 (37)

where the expressions for C1 and C2 are given in Eqs.(31) and (32). Since Lagrange multipliers

have the physical interpretations of constraint forces, λ1 and λ2 represent the constraint forces in

vertical and horizontal directions, respectively.

Equation (36) states that the beam is in dynamic equilibrium if the external virtual work done

by the applied forces equal the internal virtual work done by the forces for any virtual deformation

which satisfies the kinematic boundary conditions. Here, the internal virtual work is extended with

an inertial term using D’Alembert’s principle, and kinematic boundary conditions for constraints

are included by application of Lagrange multipliers.

In the problem of interest, P is only used in setting up the static problem to create the initial

condition. As far as the dynamic problem is in concern, one can simply set external forces to be

zero. Namely P = 0.

Substituting Eqs.(33) and (34) into Eq.(35), then substituting the resulting equation together

with Eqs.(31), (32), (37), and P = 0 into Eq.(36), and using the following non-dimensional quan-

tities
S ,

s

L
, SQ ,

sq
L
, Ut ,

ut
L
, Un ,

un
L
, K , kL

F ,
fL2

EI
, Ī ,

I

AL2
, T ,

t

(ρL4/EI)1/2
, Λ ,

λL2

EI

(38)
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gives the energy form of the equations of motion

∫ 1

0
Ünδ[Un] dS +

∫ 1

0
Ütδ[Ut] dS +

∫ 1

0

∂2Un

∂S2
δ

[
∂2Un

∂S2

]

dS

+

∫ 1

0

(

−F +
1

Ī

∂Ut

∂S
+

1

2Ī

(
∂Ut

∂S

)2

+
1

2Ī

(
∂Un

∂S

)2
)

∂Un

∂S
δ

[
∂Un

∂S

]

dS

+

∫ 1

0

(

−F +
1

Ī

∂Ut

∂S
+

1

2Ī

(
∂Ut

∂S

)2

+
1

2Ī

(
∂Un

∂S

)2
)(

1 +
∂Ut

∂S

)

δ

[
∂Ut

∂S

]

dS

=

{

Λ1
∂Un(S = SQ)

∂S
+ Λ2

(
∂Ut(S = SQ)

∂S
+ 1

)}

δ[SQ]

+ Un(S = SQ)δ[Λ1] + {Ut(S = SQ) + SQ − 1/2} δ[Λ2]

+ Λ1δ [Un(S = SQ)] + Λ2δ [Ut(S = SQ)]

(39)

Integrating Eq.(39) by parts and collecting like terms of independent variations yield the differential

form of equations of motion and boundary conditions. The PDE’s are written as the following:

from collecting terms involving δ[Un]

−
∂4Un

∂S4
− F

∂2Un

∂S2
+

3

2Ī

(
∂Un

∂S

)2 ∂2Un

∂S2
+

1

2Ī

∂2Un

∂S2

(
∂Ut

∂S

)2

+
1

Ī

∂Un

∂S

∂Ut

∂S

∂2Ut

∂S2

+
1

Ī

∂2Un

∂S2

∂Ut

∂S
+

1

Ī

∂Un

∂S

∂2Ut

∂S2
+ Λ1D (SQ − S) =

∂2Un

∂T 2

(40)

from collecting terms involving δ[Ut]

(

−F +
1

Ī

)
∂2Ut

∂S2
+

3

2Ī

(
∂Ut

∂S

)2 ∂2Ut

∂S2
+

1

Ī

∂Un

∂S

∂Ut

∂S

∂2Un

∂S2
+

1

2Ī

(
∂Un

∂S

)2 ∂2Ut

∂S2

+
3

Ī

∂Ut

∂S

∂2Ut

∂S2
+

1

Ī

∂Un

∂S

∂2Un

∂S2
+ Λ2D (SQ − S) =

∂2Ut

∂T 2

(41)

from collecting terms involving δ[SQ]

Λ1
∂Un (S = SQ, T )

∂S
+ Λ2

∂Ut (S = SQ, T )

∂S
+ Λ2 = 0 (42)

together with the recovered constraint equations in non-dimensional form

Un (S = SQ, T ) = 0 (43)

Ut (S = SQ, T ) + SQ − 1/2 = 0 (44)

where in Eqs.(40) and (41) D (SQ − S) is the Dirac delta function.

Eqs.(40) - (44) are a full set of equations of motion describing the dynamics of a nonlinear beam

with a fixed slider, where no energy is dissipated. If damping is added to the system, Eq.(36) needs
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to be rewritten to include the viscous damping terms, such as

∫

Ω

σδ[ε] + ησ̇δ[ε] + (−P+ ρü) · δ[u] dΩ = δ [λ ·C] (45)

where the added term ησ̇δ[ε] expresses that the internal damping forces contribute to the virtual

work due to any virtual deformation of the structure. It also states that the damping force is

proportional to the damping coefficient η and the strain rate σ̇.

Starting from Eq.(45), and repeating the process of nondimensionalization and variation process

described above, one can get another set of equations of motion with damping presented.

3.2 Variable-Length Finite Element Method

The finite element model of the system was established in the framework of the Arbitrary Lagrange-

Euler (ALE), following the work of [19]. To discretize Eq.(39) using finite element method that

takes into account the sliding nature of the constraint, a sliding node was chosen to put on the

beam in the same position coinciding with the constraint, which does not move in space when

the constraint is fixed. Therefore, this special node is described using Eulerian description. As

for other nodes, where the Lagrangian description is used, nodes are attached to certain material

points chosen at the beginning, and material coordinates of those nodes will remain the same as

time progresses [32].

Because of the existence of the special sliding node, two neighboring elements that share this

node become variable-length elements, while other elements are still regular. It is necessary to

derive expressions of velocity and acceleration of any material point in a variable-length element,

which compared to regular elements, are more complicated.

Consider a standard 2-node, 6-dof frame element described by material coordinates of the two

nodes (Se
1, S

e
2) and 6 nodal displacements (U e

n1, U
′e
n1, U

e
t1, U

e
n2, U

′e
n2, U

e
t2), where the superscript e

indicates element-wise or local numbering is used. In the framework of ALE description, both

(Se
1, S

e
2) and (U e

n1, U
′e
n1, U

e
t1, U

e
n2, U

′e
n2, U

e
t2) can vary with time. Using Hermite polynomials for shape

functions of displacement in the normal direction U e
n(S, T ), one obtains

U e
n(S, T ) = NT

e (S, Se
1(T ), S

e
2(T )) qe

n(T ) (46)

where

Ne =







2ξ3 − 3ξ2 + 1

ξ3 − 2ξ2 + ξ

−2ξ3 + eξ2

ξ3 − ξ2






, qe

n =







U e
n1

U
′e
n1

U e
n2

U
′e
n2







,







ae1
be1
ae2
be2







(47)

and ξ = (S − Se
1)/(S

e
2 − Se

1). The shape functions Ne are functions of both material coordinate S

and node locations (Se
1, S

e
2), which means Ne are functions of S and T . The nodal displacements

qe
n are functions of time T .

Similarly, with the help of Lagrange polynomials, the tangential displacement U e
t (S, T ) can be

written as
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U e
t (S, T ) = RT

e (S, Se
1(T ), S

e
2(T )) qe

t (T ) (48)

where

Re =

(
(Se

2 − S)/(Se
2 − Se

1)

S − Se
1)/(S

e
2 − Se

1)

)

, qe
t =

(
U e
t1

U e
t2

)

,

(
ce1
ce2

)

(49)

The shape functions RT
e are functions of S and T . The nodal displacements qe

t are functions of

time T .

Differentiating Eqs.(46) and (48) twice with respect to time, the accelerations can be derived

as

Ü e
n = NT

e q̈
e
n +

∂NT
e

∂Se
1

qe
nS̈

e
1 +

∂NT
e

∂Se
2

qe
nS̈

e
2 + 2

∂NT
e

∂Se
1

q̇e
nṠ

e
1 + 2

∂NT
e

∂Se
2

q̇e
nṠ

e
2

+
∂2NT

e

∂Se
1
2 qe

nṠ
e
1

2
+ 2

∂2NT
e

∂Se
1∂S

e
2

qe
nṠ

e
1Ṡ

e
2 +

∂2NT
e

∂Se
2
2 qe

nṠ
e
2

2
(50)

Ü e
t = RT

e q̈
e
t +

∂RT
e

∂Se
1

qe
t S̈

e
1 +

∂RT
e

∂Se
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e
1 + 2
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∂Se
2

q̇e
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e
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e

∂Se
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2 qe
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1

2
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∂2RT
e

∂Se
1∂S

e
2

qe
t Ṡ

e
1Ṡ

e
2 +

∂2RT
e

∂Se
2
2 qe

t Ṡ
e
2

2
(51)

Substituting Eqs.(46)-(51) into Eq.(39) gives the finite element version of the dynamic system.

The beam is meshed with 2m number of elements, and there are m elements to the left and m

elements to the right of the constraint. Thus node m + 1 is the sliding node on the beam and is

fixed in space. This special node has the material coordinate SQ that varies with time, while other

nodes have fixed material coordinates. Now one can use generalized coordinates q, a vector with

6m+ 4 entries written as

q = (a1, a2, . . . , a2m+1, b1, b2, . . . , b2m+1, c1, c2, . . . , c2m+1, SQ)
T (52)

∫ 1

0
Ün

Un

q
δ[q] dS +

∫ 1

0
Üt
Ut

q
δ[q] dS +

∫ 1

0

∂2Un

∂S2

∂
(
∂2Un

∂S2

)

∂q
δ[q] dS

+

∫ 1

0

(

−F +
1

Ī

∂Ut

∂S
+

1

2Ī

(
∂Ut

∂S

)2

+
1

2Ī

(
∂Un

∂S

)2
)

∂Un

∂S

∂
(
∂Un

∂S

)

∂q
δ[q] dS

+

∫ 1

0

(

−F +
1

Ī

∂Ut

∂S
+

1

2Ī

(
∂Ut

∂S

)2

+
1

2Ī

(
∂Un

∂S

)2
)(

1 +
∂Ut

∂S

)
∂
(
∂Ut

∂S

)

∂q
δ[q] dS

=

{

Λ1
∂Un(S = SQ)

∂S
+ Λ2

(
∂Ut(S = SQ)

∂S
+ 1

)}

δ[SQ]

+ Un(S = SQ)δ[Λ1] + {Ut(S = SQ) + SQ − 1/2} δ[Λ2]

+ Λ1δ [Un(S = SQ)] + Λ2δ [Ut(S = SQ)]

(53)

22



Variation of the terms in Eq.(39) is carried out by taking derivatives with respect to q. Now the

finite element version of the dynamic system is given as Eq.(53).

With the help of Lagrange multipliers, one can treat all variables in q independent with each

other, then by collecting coefficients of arbitrary δ[q], Eq.(53) gives rise to (6m + 4) nonlinear

equations.

Geometric boundary conditions given by pinned-pinned

Un(S = 0) = Ut(S = 0) = Un(S = 1) = Ut(S = 1) = 0

or a1 = c1 = a2m+1 = c2m+1 = 0
(54)

cancel 4 equations out of (6m + 4). In total, (6m) equations are obtained regarding q̈. They can

be written as

M(q, T )(6m×6m)q̈(6m) = F(q, q̇, T )(6m×6m) (55)

where M is the generalized mass matrix and F is the generalized force vector.

Furthermore, by collecting coefficients of δ[Λ1] and δ[Λ2], two constraint equations can be

recovered as

C1 = am+1 = 0

C2 = cm+1 + Sm+1 − 1/2 = 0
(56)

These form a set of differential algebraic equations which describe the motion of the beam.

If damping is presented, one can follow the whole process starting from Eq.(45), then obtain a

discretized dynamic system with the form very similar to Eq.(55). The process is lengthy and not

repeated here. Together with 2 constraint equations expressed in Eqs.(56), it is shown that the

system has been successfully discretized using variable-length finite elements.

Table 3: Properties and geometry of the simulated beam with a sliding constraint.

Material Aluminum

Young’s modulus E 69× 109 Pa

Density ρ̄ 2700 kg/m3

Damping coefficient η 10−5 sec

Beam length L 3.66 m

Beam cross section area 38.1 mm × 1.57 mm

Pre-load f 0 N

A numeric simulation of free vibration was given to demonstrate the effectiveness of the math-

ematical model. Geometry and material properties used in the simulation are listed in Table 3. In

the numeric model, the beam was meshed using 20 frame elements. A sliding joint, node No. 11

was placed on the beam at the same position where the constraint was located, with the unknown

material coordinate SQ. There were 10 elements to the left and 10 elements to the right of the

sliding node. Elements No. 10 and 11 were variable-length elements while other elements were

regular which had nodes with fixed coordinates allocated at the beginning. Initial conditions were
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created by applying a 5 N positive vertical force on the beam at S = 0.75 or s = 2.743 m. Eqs.(56)

and (55) were formulated and numerically integrated by time to solve for q(T ), q̇(T ), Λ1(T ) and

Λ2(T ) as time progresses. This process was done using MATLAB solver ode15s. The results are

shown in Fig.15.
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Figure 15: Plots of the system in free vibration: normalized energy; transverse displacement un
sampled at S = 0.75 or s = 2.743 m; material coordinate sq of the point Q in contact with the
slider; constraint force λ1 in vertical direction; constraint force λ2 in horizontal direction.

The oscillatory behavior of the nonlinear beam can be clearly observed from Fig.15. Frequency

of the transverse displacement un sampled at S = 0.75 is approximately twice the frequency of

material coordinate sq corresponding to the point Q in contact with the slider. Frequency of

the constraint force λ1 in vertical direction is strongly associated with the transverse vibration

un(S = 0.75), while frequency of the constraint force λ2 in horizontal direction is strongly associated

with sq. Constraint forces also carries high frequency components. This is due to the fact that

constraint force is related to higher degrees of derivatives of un and ut with respect to s. Total

energy of the system was obtained by combining kinetic and strain energies and then normalized

by the initial level. Energy decayed slowly due to the presence of light viscous damping with the

damping coefficient being η = 1× 10−5 sec.
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3.3 Feedback Control Design

3.3.1 Preliminary Design of Slider Motion Control

The control strategy is based on the idea of negative work. This idea simply states that energy loss

of the beam can be caused by negative work done by the constraint force from the slider. When

the slider is fixed in space, no actual work is done by the constraint force and the total energy

of the system is only dissipated through material damping, as shown in simulation results in the

free vibration case. Since one can measure (in practice) or compute (in simulation) the horizontal

constraint force Λ2, it can be used as feedback in the control scheme. Instead of using a fixed

constraint, one can prescribe the slider’s horizontal motion XC to be opposite to the direction of

Λ2 such that it does negative work. This strategy was realized by putting a new constraint to

replace the one in Eq.(32).

VC = ẊC =
∂ (Ut(S = SQ, T ) + SQ(T ))

∂T
(57)

The constraint in Eq.(31) remains the same.

This control scheme is shown in Fig.16. Based on previous work done by Nudehi, et al. [33]

and Issa, et al. [34], the Lyapunov candidate is chosen as

V1 = Etotal(q, q̇, T ) (58)

The origin of V1 corresponds to the static equilibrium state of the beam. It is obvious that when

the beam is staying in static equilibrium, i.e., q = q̇ = 0, there is V1 = 0. The change of total

energy can only be caused by damping and the work done by the horizontal constraint force Λ2 if

one prescribes the horizontal position XC of the slider while keeping its vertical position always 0,

namely

Ėtotal = Ėdamping + ẊCΛ2 (59)

where Ėdamping ≤ 0. To implement this control scheme, material boundary was set since in practice

the slider can only operate within a certain range of the beam. In order to realize Slower ≤ SQ ≤

Supper, there is

−ẊC = u =

{
h(y1 = Λ2) if Slower < y2 < Supper
0 otherwise

(60)

Substituting Eqs.(59) and (60) into Eq.(58) yields

V̇1 =

{
Ėdamping − uy1 = Ėdamping − y1h(y1) ≤ 0 if Slower < y2 < Supper
Ėdamping ≤ 0 otherwise

(61)

For the choice of control input in Eq.(60), it has been shown in Eq.(61) that it leads to V̇1 ≤ 0.

Using LaSalle’s Theorem [35], one can claim that the origin is asymptotically stable.

Efficacy of the control design in Eq.(60) was investigated by simulation. The beam was meshed

using 20 elements, with the same properties and geometry shown in Table 3. slower = 1.33 m and
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Figure 16: Preliminary feedback control design.

supper = 2.33 m were set for the simulation. In implementation, the material range [slower, supper]

for control was determined by the stroke length of the sliding device. The speed limit of the slider

was set to be 1 m/sec. With the same initial conditions applied as in the previous subsection,

results are shown in Fig.17.

As shown in Fig.17, at the end of 12 sec, the total energy of the system was effectively dissipated

to 1.0% of its starting level, while the transverse displacement at S = 0.75 was reduced to 17%.

Most high frequency vibration has been suppressed, as the history of un(S = 0.75) shows, leaving

the beam with slowly-varying transverse oscillations that should be fairly easy to cope with in ap-

plication. The range of motion for the slider stayed within 0.2 m, which suggests that a relatively

small travel distance suffices for the purpose of vibration suppression in this design. As the vibra-

tion energy was dissipated and the displacement of the beam was reduced, constraint force λ2 in

horizontal direction decreased fast. This is due to that the geometric nonlinearity which gives rise

to λ2 becomes less significant as the reduced amplitude of un decouples the interaction between un
and ut in the axial strain. One potential problem of the preliminary control design is that because

of the high frequency components in λ2, the position of the slider oscillates too fast in order to

follow the change of λ2, as one can see from the plot of ẋc. This may exceed the bandwidth of the

actuator. The potential issue in implementation leaded to the modified feedback control design.

3.3.2 Modified Control Design

As stated in last subsection, when the slider is trying to follow the change of Λ2, it may oscillates too

fast that the hardware requirement exceeds the bandwidth of the actuator. To attack this problem,
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Figure 17: Plots of the system applied with direct control: normalized energy of the direct control
results in solid line, normalized energy of free vibration in dashed line as reference; transverse
displacement un sampled at S = 0.75 or s = 2.743 m; slider position xc; slider velocity ẋc; constraint
force λ2 in horizontal direction.

introduce a Low-Pass Filter (LPF) was introduced into the feedback loop, which measures Λ2 as

its input and gives a signal z as the output. This LPF is chosen to be first-order with the time

constant τ . Instead of using Λ2 directly in the control law, the filterd signal z was used in the

modified feedback control design. Choosing a new Lyaponov candidate, one can prove that the

stability of the modified system can be retained.

The modified control scheme is shown in Fig. 18. A new Lyapunov candidate was chosen as

V2 = Etotal + τ

∫ z

0
h(ξ) dξ (62)

The origin of V2 corresponds to the static equilibrium state of the beam when q = q̇ = Λ2 = 0.

Use Eq.(59) one can obtain that when Slower < y2 < Supper, the following holds

V̇2 = Ėtotal + τh(z)ż

= Ėdamping − y1u+ h(y1 − z)

= Ėdamping − zh ≤ 0

(63)
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And when y2 ≤ Slower or y2 ≥ Supper, there is V̇2 = Ėdamping ≤ 0. Therefore using LaSalle’s

Theorem, again one can claim that the origin is asymptotically stable for the modified control

system.

The efficacy of the modified control design was investigated by simulation. Meshing, material

properties, geometric and control parameters, plus initial conditions were chosen to be the same as

in the preliminary control design. For the first-order low-pass filter, time constant τ was simulated

as 40 ms. Results of simulation are shown in Fig.19.

Adding the low-pass filter is a trade-off between control efficiency and actuator bandwidth. As

shown in Fig.19, the slider velocity ẋc driven by the actuator, switched less frequently compared

with the preliminary design results, especially at the early stage (before 2 sec). This eases the

requirement for the actuator bandwidth. The cost for this is that the vibration suppression process

becomes less efficient. At the end of 12 sec, the total energy of the system had 9.7% remained.

To achieve the same level of 1.0% suppression as in the control without filter, the modified design

obviously requires longer time of the slider application.
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Figure 19: Plots of the system applied with direct control: normalized energy of the modified control
results in solid line, normalized energy of free vibration in dashed line as reference, normalized
energy of the direct control results in dotted-solid line as reference; transverse displacement un
sampled at S = 0.75 or s = 2.743 m; slider position xc; slider velocity ẋc; constraint force λ2 in
horizontal direction after the low-pass filter.

4 Vibration Suppression Through Boundary Tension Variation

In this section we present the third control strategy for vibration suppression. The antenna is

modeled as a thin plate and it is connected to the support structure via distributed tensile forces

along its boundary.

4.1 Dynamics of a Rectangular Plate Subject to Tension

Consider a rectangular Kirchhoff-Love plate with the dimension of a × b. The equation of the

transverse vibration subject to in-plane stress is given as [27]:

D

[
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

]

+ ρ̄h
∂2w

∂t2
= f +Nx

∂2w

∂x2
+Ny

∂2w

∂y2
+ 2Nxy

∂2w

∂x∂y
(64)
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Figure 20: Plate subject to tension

where the rigidity is defined as

D ,
Eh3

12(1 − ν2)
(65)

and w = w(x, y, t) denotes the transverse displacement of a material point (x, y) at time t; f denotes

the transverse load; ρ̄ and h are the material density and plate thickness, respectively; Nx, Ny and

Nxy are normal and shear in-plane stress, as shown in Fig.20.

Kinetic and strain energies of the plate can be written as

T ,
1

2

∫ ∫

ρ̄hẇ2 dxdy (66)

U ,
1

2

∫ ∫

[D{(
∂2w

∂x2
+
∂2w

∂y2
)2 + 2(1− ν)

[

(
∂2w

∂x∂y
)2 −

∂2w

∂x2
∂2w

∂y2

]

}

+Nx(
∂2w

∂x2
)2 +Ny(

∂2w

∂y2
)2 + 2Nxy

∂w

∂x

∂w

∂y
] dxdy

(67)

Assume w to be the form of

w(x, y, t) =W (x, y)eiωt (68)

where W (x, y) is the mode shape. The modes shape is discretized as follows

W (x, y) =
N∑

k=1

ckφk(x, y) (69)

where ck is the generalized coordinates and φk are a series of basis functions. If the finite element

analysis is used, φk are piece-wise polynomials known as shape functions. Here Rayleigh-Ritz

method was employed and φk can be as simple as a series of sine functions for the simply supported
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boundary condition.

Writing the maximum kinetic and strain energies as:

Tmax =
ω2

2
XT

p MpXp (70)

Umax =
1

2
XT

p KpXp (71)

gives the generalized coordinates as

Xp = [c1, c2 · · · , cN ]T (72)

and the mass and stiffness matrices are assembled as

Mp(i, j) , ρ̄h

∫ ∫

φiφjdxdy (73)

Kp(i, j) ,

∫ ∫

{D

[
∂2φi
∂x2

∂2φj
∂x2

+
∂2φi
∂y2

∂2φj
∂y2

+ ν
∂2φi
∂x2

∂2φj
∂y2

+ ν
∂2φi
∂y2

∂2φj
∂x2

+ 2(1 − ν)
∂2φi
∂x∂y

∂2φj
∂x∂y

]

+Nx
∂φi
∂x

∂φj
∂x

+Ny
∂φi
∂y

∂φj
∂y

+Nxy(
∂φi
∂x

∂φj
∂y

+
∂φi
∂y

∂φj
∂x

)

︸ ︷︷ ︸

stress induced stiffness terms

}dxdy

(74)

and the stiffness matrix can be viewed as a combination of:

Kp = K0 +NxKx +NyKy +NxyKxy
︸ ︷︷ ︸

stress induced stiffness terms

(75)

Set Nxy = 0 and only consider the normal in-plane stress cause by tension, the stiffness matrix

becomes

Kp = K0 +NxKx +NyKy (76)

With damping presented, the distretized equations of motion of the plate can be written as

MpẌp +DpẊp +K0Xp +NxKxXp +NyKyXp = 0 (77)

where Dp = βKp is the damping matrix for structural damping with a positive coefficient β. Mp,

K0, Kx, Ky and Dp are positive-definite symmetric matrices.

4.2 Feedback Control Design

4.2.1 Direct Active Control

The proposed control strategy is to vary the tension level Nx(t) and Ny(t) based on the states of

the system Xp. The scheme is given as
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Nx =

{
0 if ẊpKxXp < 0

Px if ẊpKxXp ≥ 0
(78)

and

Ny =

{
0 if ẊpKyXp < 0

Py if ẊpKyXp ≥ 0
(79)

where Px and Py take positive values since their directions are tensile. This scheme is illustrated

with the help of Fig. 21

ẊT
p KyXp

Px

h(z)

z

Ny

Figure 21: Diagram for the direct active control
.

Stability of this control scheme can be proven by choosing Lyapunov function candidate as

V1 =
1

2
ẊT

p MpẊp +
1

2
XT

p K0Xp (80)

Then its time derivative is

V̇1 = −ẊT
p DpẊp − (ẊT

p KxXp)Nx − (ẊpKyXp)Ny ≤ 0 (81)

where the properties that Dp, Kx and Ky are positive-definite matrices are used. Using LaSalle’s

Theorem [35], one can claim that the origin is asymptotically stable.

Simulation was done to verify this control scheme. In the numerical simulation, a rectangular

plate with the dimension a× b×h being simply supported at four edges were considered. The basis

functions in Eq.(69) were chosen to be

φ(m,n) = sin(mxπ/a) sin(nyπ/b) (82)

so that geometric boundary conditions were satisfied. Six terms of the basis functions were taken

for the computation, they were arranged as: φ1 = φ(1, 1), φ2 = φ(2, 1), φ3 = φ(3, 1), φ4 = φ(1, 2),

φ5 = φ(2, 2), φ6 = φ(3, 2). Initial condition was created by setting at t = 0

Xp = [1.00 0.50 0.25 0.20 0.02 0.01]T × 10−2

and Ẋp = 0. This initial condition reasonably assigns more energy to lower frequency modes

associated with φi terms that have small index i values. Other properties and parameters are

shown in Table 4.
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Table 4: Properties of Simulated Plate

Material Aluminum

Young’s modulus E 69× 109 Pa

Density ρ̄ 2700 kg/m3

Damping coefficient β 0.0002

Plate length a 5 m

Plate width b 2 m

Plate thickness h 0.001 m

Maximum Tension in x direction Px 15 N/m

Maximum Tension in y direction Py 6 N/m

Eq. (77) was rewritten in the first-order form and then integrated by time using MATLAB solver

ode15s to implement the control scheme described in Eq. (78) and 79. Results are shown in Fig.

22.

Fig. 22 shows the efficacy of this active control design. In Fig. 22 (a), no control was applied

and Lyapnov energy defined in Eq. (80) was dissipated only through internal material damping. At

t = 40 s, there was 47% of the starting vibration energy remained in the plate. While as shown in

Fig. 22 (b), remaining energy was negligible in the system and vibration was completely suppressed

by this control strategy. Displacement plots sampled at one point on the plate are also shown in

22 (c) and (d). The comparison demonstrates the efficacy of the scheme.

This control scheme requires the tension varies based on the information of the system states,

namely, generalized displacements and velocities obtained from an observer. This information is

strongly associated with the modal amplitudes of the vibrating plate. Since there are high frequency

components presented, it requires the tension switches directions fast enough to follow the change

of system states. This may cause issues in physical implementation, given all hardware used to

control the tension have limited bandwidth and speed. To address this issue, a modified control

design was developed.

4.2.2 Modified Control Design

In order to maintain the control efficacy with limited bandwidth and speed of hardware, a Low-Pass

Filter (LPF) was into the feedback loop of the control scheme, as shown in Fig. 23. This filter is

first order with the time constant τ . It measures Ẋp
T
KxX and Ẋp

T
KyX as its inputs and gives

a signal z as the output. There is also saturation considered in the model’s transfer function. A

parameter ǫ describes the linear response region and saturation region of the actuator.

One needs to guarantee the stability of this modified control design. Choosing the following

Lyaponov candidate, one can prove that the stability of the modified system is retained:

V2 =
1

2
ẊT

p MpẊp +
1

2
XT

p K0Xp + τ

z∫

0

h(σ)dσ (83)
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Figure 22: Simulation results of the direct active control design: (a)(b) Lyapunov energy of the
uncontrolled and controlled systems; (c)(d) Transverse displacement of the uncontrolled and con-
trolled systems, sampled at (x = 4.0, y = 0.5)

.

Time derivative of the Lyaponov function is

V̇2 = −ẊT
p DpẊp − (ẊT

p KxXp)Nx − (ẊpKyXp)Ny + τh(z)ż (84)

= −ẊT
p DpẊp − (ẊT

p KxXp)Nx − (ẊpKyXp)Ny − zh ≤ 0 (85)

Using LaSalle’s theorem, one can claim that this modified system is asymptotically stable.

Numerical verification was performed similarly as in the direct control design. Same basis

functions constructed by sine series were employed. Properties and geometry are shown in Table 4.

Time constant of the first-order filter was set to be τ = 0.2 s and the saturation parameter ǫ = 0.3.

Same as in the direct control, boundaries are simply supported and initial condition was created

ẊT
p KxXp

1
τs+1

first-order filter

Px

h(z)

z

ǫ

Nx

Figure 23: Diagram for the filtered control
.
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by setting at t = 0

Xp = [1.00 0.50 0.25 0.20 0.02 0.01]T × 10−2

and Ẋp = 0. Results are shown in Fig. 24.
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Figure 24: Comparison between the direct control and the filtered control results: (a)(b) Lyapunov
energy of the direct and filtered controlled systems; (c)(d) y-direction tension level in the direct
and filtered controlled systems

.

Fig. 24 provides the comparison between the direct control and the modified control with a

filter. Fig. 24 (a) records the Lyapnov energy defined in Eq. (80) of the direct control system.

The remaining level at t = 40, as discussed before, was negligible. Energy result of the modified

system is shown in Fig. 22 (b). At t = 40 s, there was approximately 1% remained compared to

the starting level. The control became less efficient with the filter added. This reveals the typical

trade-off between the hardware cost and system performance. The high efficiency of the direct

control comes with the cost of extremely high bandwidth and speed requirements of the hardware,

in order to taken into account the high frequency modes of the plate and to follow them. Fig. 22

(c) and (d) compare part of the tension level history under two different control schemes. It clearly

shows with the filter, actuator switches the direction of tension Ny much less frequently. Choosing

τ = 0.2 and ǫ = 0.3 reasonably models the realistic speed of a control system. The balance was

achieved with the modified design, considering the lower switching frequency but still satisfactory

vibration suppression efficiency.
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4.3 Boundary Consideration

The above modelling of the plate assumes simply support boundaries at four edges. In the applica-

tion of tension-aligned array structures, the array panels are usually connected through tensioners

to the support structures. In such a scenario, boundaries of plates which are used to model the

array panels are no long fixed to ground. The edges are suspended by tensions and they acquire

some flexibility, as shown in Fig. 25 and 26. This more realistic boundary condition was investi-

gated regarding if it compromises the control idea that is based on varying tension which operates

on suspended boundaries.

a

b

Lx

Lx

Ly

Ly

NxNx

Ny

Ny

w(x, y)

X

Y

Figure 25: Plate subject to tension with tension suspension boundary conditions

a

LxLx

Nx
Nx

w(x, y)
X

Z

Figure 26: Side view of a plate with tension suspension boundary conditions

As shown in Fig. 25 and 26, consider normal in-plane tensions Nx and Ny. They connect the

edges of the plate to the support structure which can be treated as fixed. There are distances

between the plate edges and the support from which the tensions are imparted. Assume these

distances are Lx and Ly, symmetric in opposite sides. Since the plate edges are suspended, they

are allowed to rotate and have transverse displacements. Directions of the tensions are not always

parallel to the X-Y plane. They change accordingly as the edges translate. This configuration
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changes the stiffness of the system in a way that more terms are added into the stiffness since

additional strain energy is created due to the tensions as the edges move transversely. The tension-

induced stiffness terms Kx and Ky in Eq. (76) need to be reformulated as

Kx =

∫ ∫
∂φi
∂x

∂φj
∂x

dxdy +
1

Lx

b∫

0

[φi(0, y)φj(0, y) + φi(a, y)φj(a, y)] dy

︸ ︷︷ ︸

additional terms

(86)

Ky =

∫ ∫
∂φi
∂y

∂φj
∂y

dxdy +

︷ ︸︸ ︷

1

Ly

a∫

0

[φi(x, 0)φj(x, 0) + φi(x, b)φj(x, b)] dx (87)

where in Eqs. (86) and (87), line integrations are performed to account for the contribution of the

transverse displacements of the edges made into the strain energy and into the system stiffness.

With the formulation of Eqs. (86) and (87) presented, basis functions that assume the dis-

placement shape of the plate also need to be modified. Sine functions used before in Rayleigh-Ritz

method are no longer suited since geometry boundary conditions allow the edges to move. In this

case, a finite element model is well-suited since it is capable of describing large range of geome-

try and boundary conditions. Rayleigh-Ritz method is still an option for the modelling, but the

basis functions need to be changed to a more complicated form. In [36] a set of functions com-

bining sinusoidal series and fourth-order polynomials are provided. No matter which discretization

method is employed, the system stiffness keeps the same form as Eq. (76). This indicates changing

the boundary conditions from simply supported into tension suspended does not affect the control

strategy. To verify this, simulation was done using the same plate geometry and properties as

shown in Table 4. Distances between the edges and the fixed support are taken as Lx = Ly = 0.1

m. Initial condition was created by setting at t = 0

Xp = [1.00 0.30 0.20 0.10 0.05 0.04]T × 10−2

and Ẋp = 0. Simulation results are shown in Fig. 27.

Results in Fig. 27 compares the results between direct control application (no filter) and free

vibration (no control) cases. In Fig. 27 (a), no control was applied and Lyapnov energy defined in

Eq. (80) was dissipated only through internal material damping. At t = 40 s, there was 63% of the

starting vibration energy remained in the plate. While as shown in Fig. 27 (b), remaining energy

was negligible in the system and vibration was completely suppressed by this control strategy.

Displacement plots sampled at one point on the plate are also shown in 27 (c) and (d). The

comparison demonstrates the efficacy of the control strategy based on tension varying is retained

under the more realistic boundary conditions.
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Figure 27: Simulation of control results of a plate with tension suspension boundary conditions:
(a)(b) Lyapunov energy of the uncontrolled and controlled systems; (c)(d) Transverse displacement
of the uncontrolled and controlled systems, sampled at (x = 4.0, y = 0.5)

.

5 Additional Work

In the last three sections, the antenna was modeled as a plate or a beam, i.e., as a structural element

with bending stiffness. Since a lot of attention has been given to gossamer structural elements such

as membranes, we conducted separate studies on vibration suppression in strings and membranes.

Some of these studies have already been published; the publications are listed on the second page

of this report.
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